Does Low-intensity pulsed ultrasound treatment repair articular cartilage injury? A rabbit model study
نویسندگان
چکیده
BACKGROUND Low-intensity pulsed ultrasound (LIPUS) regiment has been used to treat fractures with non-union and to promote bone union in general. The effect of LIPUS on articular cartilage metabolism has been characterized. Yet, the effect of LIPUS to repair articular cartilage injury remains unclear in vivo. METHODS We designed a study to investigate the effect of LIPUS on articular cartilage repairing in a rabbit severe cartilage injury model. Eighteen rabbits were divided into three groups: Sham-operated group, operated group without-LIPUS-treatment, operated group with-LIPUS-treatment (a daily 20-minute treatment for 3 months). Full-thickness cartilage defects were surgically created on the right side distal femoral condyle without intending to penetrate into the subchondral bone, which mimicked severe chondral injury. MR images for experimental joints, morphology grading scale, and histopathological Mankin score were evaluated. RESULTS The preliminary results showed that the operated groups with-LIPUS-treatment and without-LIPUS-treatment had significantly higher Mankin score and morphological grading scale compared with the sham-operated group. However, there was no significant difference between the with-LIPUS-treatment and without-LIPUS-treatment groups. Cartilage defects filled with proliferative tissue were observed in the with-LIPUS-treatment group grossly and under MR images, however which presented less up-take under Alcian blue stain. Furthermore, no new deposition of type II collagen or proliferation of chondrocyte was observed over the cartilage defect after LIPUS treatment. CONCLUSION LIPUS has no significant therapeutic potential in treating severe articular cartilage injury in our animal study.
منابع مشابه
THE BEST DURATION OF LOW INTENSITY PULSED ULTRASOUND FOR ACCELERATING FRACTURED-RADIAL BONE REPAIR
We have already shown that low intensity pulsed ultrasonic treatment increases rabbit radial fracture healing. The present experiment was undertaken to find out the best duration for treatment. A complete transverse fracture was made in the right radial bones of21 adult male rabbits by a Stanley knife. The animals were divided into 4 groups: group 1, control groups 2, 3, and 4, experimental...
متن کاملEffect of Low-Intensity Pulsed Ultrasound (LIPUS) on Cartilage Healing; A Preliminary Study
INTRODUCTION: Low-intensity pulsed ultrasound (LIPUS) stimulation has been observed to enhance bone formation, cartilage regeneration, and softtissue (tendon and muscle) healing. In particular, increased biosynthetic activity and chondrogenic differentiation of human mesenchymal stem cells were observed under LIPUS . However, optimal conditions (such as frequency, intensity and treatment durati...
متن کاملPreconditioning of Rabbit Mesenchymal Stem Cells in Polyglycolic Acid (PGA) Scaffold using Low-Intensity Ultrasound Improved Regeneration of Cartilage in Rabbit Articular Cartilage Defect Model
This study investigated the effect of low intensity ultrasound (LIUS) stimulation of mesenchymal stem cells (MSCs) in vitro on the repair of cartilage defect after implantation of the construct in vivo. Rabbit MSCs were cultured in the polyglycolic acid (PGA) scaffold and preconditioned with (MSCs/US+) or without (MSCs/US-) LIUS stimulation during the chondrogenic differentiation for 1 week in ...
متن کاملDoes low-intensity pulsed ultrasound stimulate maturation of tissue-engineered cartilage?
Traumatic events are a primary cause of local lesions of articular cartilage. Tissue engineered, cartilage-like structures represent an alternative to current treatment methods. The time necessary for tissue maturation and the mechanical quality of the regenerate at implantation are both critical factors for clinical success. Low-intensity pulsed ultrasound has proven to accelerate chondrogenes...
متن کاملLow-Intensity Pulsed Ultrasound Treatment at an Early Osteoarthritis Stage Protects Rabbit Cartilage From Damage via the Integrin/Focal Adhesion Kinase/Mitogen-Activated Protein Kinase Signaling Pathway.
OBJECTIVES To investigate whether low-intensity pulsed ultrasound (US) has different protective effects on early and late rabbit osteoarthritis cartilage via the integrin/focal adhesion kinase (FAK)/mitogen-activated protein kinase (MAPK) signaling pathway. METHODS Thirty-six New Zealand White rabbits were divided into early control, early osteoarthritis, early treatment, late control, late o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2014